Opinion Mining with Deep Recurrent Neural Networks

نویسندگان

  • Ozan Irsoy
  • Claire Cardie
چکیده

Recurrent neural networks (RNNs) are connectionist models of sequential data that are naturally applicable to the analysis of natural language. Recently, “depth in space” — as an orthogonal notion to “depth in time” — in RNNs has been investigated by stacking multiple layers of RNNs and shown empirically to bring a temporal hierarchy to the architecture. In this work we apply these deep RNNs to the task of opinion expression extraction formulated as a token-level sequence-labeling task. Experimental results show that deep, narrow RNNs outperform traditional shallow, wide RNNs with the same number of parameters. Furthermore, our approach outperforms previous CRF-based baselines, including the state-of-the-art semi-Markov CRF model, and does so without access to the powerful opinion lexicons and syntactic features relied upon by the semi-CRF, as well as without the standard layer-by-layer pre-training typically required of RNN architectures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fine-grained Opinion Mining with Recurrent Neural Networks and Word Embeddings

The tasks in fine-grained opinion mining can be regarded as either a token-level sequence labeling problem or as a semantic compositional task. We propose a general class of discriminative models based on recurrent neural networks (RNNs) and word embeddings that can be successfully applied to such tasks without any taskspecific feature engineering effort. Our experimental results on the task of...

متن کامل

Porosity classification from thin sections using image analysis and neural networks including shallow and deep learning in Jahrum formation

The porosity within a reservoir rock is a basic parameter for the reservoir characterization. The present paper introduces two intelligent models for identification of the porosity types using image analysis. For this aim, firstly, thirteen geometrical parameters of pores of each image were extracted using the image analysis techniques. The extracted features and their corresponding pore types ...

متن کامل

Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays

In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...

متن کامل

Analysis of Users’ Opinions about Reasons for Divorce

One of the most important issues related to knowledge discovery is the field of comment mining. Opinion mining is a tool through which the opinions of people who comment about a specific issue can be evaluated in order to achieve some interesting results. This is a subset of data mining. Opinion mining can be improved using the data mining algorithms. One of the important parts of opinion minin...

متن کامل

Bidirectional Recursive Neural Networks for Token-Level Labeling with Structure

Recently, deep architectures, such as recurrent and recursive neural networks have been successfully applied to various natural language processing tasks. Inspired by bidirectional recurrent neural networks which use representations that summarize the past and future around an instance, we propose a novel architecture that aims to capture the structural information around an input, and use it t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014